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Ensemble averages of exponential quadratic phonon 
operators 
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$Department of Chemistry, Massachusetts Institute of Technology, Cambridge, 
Massachusetts 02139, USA 

Received 26 October 1977, in final form 12 January 1978 

Abstract. Operator disentangling, the evaluation of matrix elements in the coordinate 
representation, and a matrix technique are all useful for calculating ensemble averages of 
exponential quadratic phonon operators. Examples are presented using all three tech- 
niques, and their respective merits are discussed. 

1. Introduction 

Exponential operators are of widespread occurrence in quantum physics, and a 
comprehensive account of their properties has been given by Wilcox (1967). The 
exponents can often be expressed as functions of two operators having a c-number 
commutator: 

where I is the identity operator. Quadratic functions of this type are common, for 
example in the density operator eCBH formed from a Hamiltonian H in which P and Q 
are boson annihilation and creation operators (p = l / k T ) .  

In recent work on exciton diffusion with quadratic exciton-phonon coupling 
(Munn and Silbey 1978), we have employed a canonical transformation with an 
exponent quadratic in phonon operators. Exponential operators like this have then to 
be averaged over the thermal phonon ensemble. Techniques for evaluating such 
averages of exponential linear operators are described in various places (Wilcox 1967, 
Messiah 1959, Grover and Silbey 1970), but for quadratic operators we were unable 
to find information on comparable techniques. We therefore devised our own 
methods using a combination of operator-disentangling (Witschel 1975) and coor- 
dinate-momentum (Feynman 1972) techniques. Subsequently our attention was 
drawn to the matrix technique of Balian and Br6zin (1969), which is well suited to 
calculating the required averages. Since the techniques and results are of wider 
application than our transport work, we present here the evaluation of averages of 
selected exponential quadratic operators using all three techniques. 
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2. Techniques 

2.1 Operator disentangling 

The operator-disentangling technique is essentially a normal-ordering procedure. The 
exponent we shall mostly use is y(a t2-a2)  (Munn and Silbey 1978), where a’ and a 
are operators with [a, a’] =I .  Now a’, a’’ and their commutator form a closed set 
under commutation (a Lie algebra): 

[a’, a”]  = 2(a’a + a u t >  = 4(UtU +$), 

[a2 ,  u ta ]  = 2 2 ,  

[a f2 ,  a’a] = -2a * 
t 2  

Then the operators A = at2, B = -a’ and C = 4(ata  +$) satisfy 

[A, B]  = C ;  [A, C ]  = -bA; [B, C ]  = bB ( 5 )  

exp[y(A +B)] = exp(FB) exp(GC) exp(FA) (6 )  

with b = 8. For operators of this sort, Witschel (1975) gives the result 

where 

F = (2/b)”2 tanh[y(b/2)’’’], 

G = (2/b) In ~osh[y(b/2)*’~].  

Making the appropriate identifications, we find 

e = exp[y(a t2 - a’)] 

= exp(-fa’tanh 2y) exp[(ata +;)In cosh 2y] exp(&zt2tanh 2y). (9) 
Alternatively, we may set A = -a2,  B = at2 and C = -4(ata +$) and still satisfy 
equation (9, obtaining 

~=exp[y (a t2 -a2 ) ]  
(10) 

Other, less symmetrical, forms of equations (9) and (10) can be obtained in which the 
middle exponential is moved to the first or last place, but these forms offer no further 
advantages in the thermal averaging. The averaging proceeds by inserting complete 
sets of phonon states in the occupation-number representation between successive 
exponential operators. 

= exp(fas2 tanh 2 y )  exp[ - (u ta  ++)In cosh 271 exp(-ta2 tanh 27). 

2.2 Coordinate representation 

The coordinate-momentum technique depends on the expression (Feynman 1972) for 
the matrix elements of the density operator p for a linear harmonic oscillator in the 
coordinate representation: 

-0  [(q’+q‘’)cosh 2x -2qq’]), 
(4 ’p ’4 ‘ )=  (27rh sinh 2x )”’ exp(2h sinh 2x 

where x = fphw. Here 4 is the mass-weighted coordinate, so that the Hamiltonian is 

H = f(w ’4’ +p2), (12) 
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where p is the momentum conjugate to q, - ihd/dq. An alternative form of equation 
(11) is 

w ) 1 / 2  exp(z[ (q+q ' )Ztanhx+(q-q ' )2cothx]) .  
(4 'p t4 ' )=  (277h sinh 2x (13) 

In this technique, averaging again proceeds by inserting complete sets between suc- 
cessive operators. The exponential quadratic operator still depends on d/dq but by 
suitable manipulations its matrix elements can be derived. Then the thermal average 
is obtained as a multiple Gaussian integral which can be evaluated directly. 

2.3 Matrix representation 

In the matrix technique, an exponential quadratic operator T is written as 

Y = exp &sa, (14) 

where a = (a, a t )  and the matrix S is symmetric. This operator is represented by the 
matrix 

[ .Fl= exp 7S, (15) 
where 

7=( - 1  O 0 '>. 

Thus if T3 = 9 1 9 2 ,  T3 is represented by the matrix [T3] = [T1][T2] (Balian and BrCzin 
1969). The representative matrix satisfies 

[q~[$] = T. (17) 

p = exp[ - x (aa + + uta  11, 
In particular, the density operator for the linear harmonic oscillator, 

(18) 
is represented by 

[PI =exp[ 7( -;x -;")I = (e;x e:x). 

For the thermal averages we require the trace of the operator, given by 

(19) 

where the state t u )  is an eigenstate belonging to the eigenvalue v of the number 
operator uta. The trace is invariant under a canonical transformation and so can be 
evaluated by a transformation which brings T into the form (18), for which 

Tr T = e-"/(l- e-2x). (21) 

The same transformation brings [TI into the diagonal form (19). It is then necessary 
to express T r T  in terms of some invariant of [Y]. It can be verified that this is 
achieved by the relation 

Tr F= [-det([Tl-1)]-'/2. (22) 
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These results can be extended to sets of N different pairs of operators ai and at by 
writing a = (al, . . . aN, a:, . . . a k )  and taking the elements of T in equation (16) to be 
the null and unit matrices of order N. The result (17) shows that the diagonalised 
matrix [T] then takes the form diag(Tl, . . . TN, TT', , . . TG'), and leads to the general 
result 

Tr 9=[(-1)N det([L]-l)]-1/2. (23) 

3. Results 

3.1. Calculation of ( e )  

3.1.1. Operator disentangling. We first calculate the average (e), where 6 is the 
operator in equations (9) and (lo), from 

m 

where y = e-2x. The required matrix elements are obtained from 

where f = 3 tanh 27  and g = In cosh 2y;  equation (9) is used rather than equation (10) 
because restrictions on the summation variable are riot then necessary (any number of 
phonons can be created, but not annihilated). Using the results 

at2sjU)= [(v+1)2r]1/2)v+2S) (26) 
(via" = ( v  +2rl[(u + 1)2,]1'2, ( 2 7 )  

where (Sneddon 1966) 

( ( Y ) ~ = ( Y ( L Y + ~ ) . .  . ( a+r -1 )  

= r(a + r ) / T ( a )  

with r ( z )  the gamma function, we find 

Using the duplication formula for the gamma function (Sneddon 1966) we obtain 

(U + 1)Zr = 4'(3u + $ ) r  (3U + l)r, 

( u l O l u ) =  (cosh 2y)"' Z F I ( ~ U  +$, $0 + 1; 1; -sinh2 27). 

(31) 

whence equation (30) becomes 

(32) 

The hypergeometric function in equation (32) can be written as a Legendre function 
(Abramowitz and Stegun 1967, formula 15.4.11), leading to 

( U l O l v )  = (cosh 2y)-"2Pu(l/cosh 2 y ) .  (33) 
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Equation (24) then gives the generating function for the Legendre functions, with the 
final result 

(8)={1+2sinh2 y[n2+(n+1)2]}-"2, (34) 
where 

n = Y/(l - Y >  (35) 

is the average phonon occupation number. The same result is obtained without going 
through any special functions if the order of the summations is reversed. This deriva- 
tion uses the alternative to equation (31) 

(U + 1)2, = (2r -t. 1)u(2r)!/v! 

and the result 

(.)uzu/V! = (1 (37) 
U 

followed by use of equation (31)  for U = 0, where (l)r = r!. 

3.1.2. Coordinate representation. In the coordinate-momentum representation, 

= i(P4 +4PY a*2 - a 2  

= 1 + 2qd/dq, 

so that 

8 = e y  exp(2yq d/dq). 

We calculate (8) from 

where from equation (23) we obtain 

r w  1 

The matrix elements of 8 follow by using the result (Wilcox 1967) 

exp(2yd/dq)4(4) = 4 ( e2W 

(q21ehl) = eY~(eZyq2-q1). 

with Isl) = S(q  -41), whence 

We then have 
W 

(8) = 2 ey sinh x dq(e2yqlplq), i, 
which with equation (1 1) can be evaluated to give 

(8) = 2qey sinh ~ [ ( e ~ ~  + 1) cosh 2x - 2]-'". 

(38) 

(39) 



944 R W Munn and R Silbey 

Using the results 

2 sinh x = [ n ( n  + l)]-”’, 

2cosh2x=[n2+(n+1)’ ] /n(n+1) ,  

we reduce equation (46) to the required expression (34). 

3.1.3. Matrix representation. From equation (15), 8 can be represented by the matrix 

cosh 2 y  sinh 2 y  
[el = exp[ .( -0”’ 3 = ( sinh 2 y  cosh 2y 

Thus from equation ( 2 2 )  

(8) = Tr(pO)/Trp 

(49) 

Using [ p ]  from equation (19) we find 

det([p][8] - I) = 2(1 -cosh 2 y  cosh 2 x )  

det([p] - I )  = 2(1 -cosh 2 x ) .  

(52) 

(53) 

Substitution in equation (5 1) and use of equation (48) yield the result (34). 

3.2. Calculation of (Ot( t )8)  

The second average we calculate is (d t ( t )8 ) ,  where 

et(?) = exp[ - y(a e a’ e-’iw?]. t2 Z i o t -  
(54) 

3.2.1. Operator disentangling. Using equation (9) to disentangle Ot(t)  and equation 
(10) to disentangle 8, we can write 

e t ( t ) e  = expva’ e-2iw? exp(ga+a) exp[-fa t 2  (e Ziwt- 111 exp(-ga+a) exp(-fa2). ( 5 5 )  

Using the alternatives (9) and (10) allows us to combine the terms in at’. From the 
cyclic property of the trace and the result (Wilcox 1967) 

e-”+‘4((a)= 4(eAa),  (56) 
the required average can be written as 

(et(t)8) = (1 - y )  (cosh 2y)-”(vl exp(Xa’) exp(Yata) exp(Zat2)lv), (57) 
U 

where 

The matrix elements are now of the same form as in equation (25) and can be 
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evaluated in the same way. After some re-arrangement, the final result can be written 
as 

(e t ( t )e)  = (1 + sinh' 2 y [ n 2 ( 1  - e2iw?+ ( n  + 1)'(1- e-2iw?]}-1/2. 

( e  t(t)e) = Tr[e-(5-ir'h)Hef e-irH'he]/Trp 

(61) 

3.2.2. Coordinate representation. For this technique we write 

(62) 

and use equations (42) and (44) to find 

(63) (e'(t)e) = 2 sinh x Im Im dql dq2(ql e-2Yle-(5-ir/h)H Iqz)(q2 

The matrix elements are given by equation ( l l ) ,  with suitable re-interpretation of x ,  
leading to 

( O ' ( t ) O )  = 2 sinh x/r(sinh 2x'sinh 2 i ~ t ) " ~  

-irH/h 
141). 

-m -m 

m 

XI-: I-, d41 d42 e x p [ - ( a l d  +2a12qlq2+a~~q:)] ,  (64) 

where XI  = x -hot and 

a l l  = e-4y coth 2x'+coth 2iwt 

a22 = coth 2x' + e4' coth 2iwt 

a12 = -(e-2' cosech 2x' +e2' cosech 2iwt). 

(65) 

(66) 

(67) 

Now multiple Gaussian integrals are directly evaluated as (Friedman 1956) 

After lengthy algebra, equations (64)-(68) yield the previous result (61) for ( Ot(t)O). 

3.2.3. Matrix representation. The operator et(?) is represented by the matrix 

cosh 2 y - eZiwr sinh 27) 
cosh 2 y * = ( - e-2iwr sinh 2 y 

With equation (49) for [e] this yields the matrix representation 

l -A+s inhZ2y  
[et(t)el = ( A -  sinh 2y cosh 2y (71) 

where 
A - 1 -e*2ior. * -  

This leads to the result 

det([pe+(t)e] - I) = 2 - 2 cosh 2x - sinh2 2 y(e2XA- + e-2XA+) (73) 
which with equation (53) can be manipulated to give (Ot(r)e) in the form (61). 
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3.3. Calculations for a dimer 

In our work on exciton transport in a molecular crystal lattice (Munn and Silbey 
1978), the calculation of the foregoing averages serves mainly as a guide to more 
complicated calculations. In particular, it is necessary to consider operators defined 
for different sites in the crystal, averaged over a band of phonon states in order to 
obtain ergodic behaviour and hence diffusive transport at long times. These cal- 
culations can be illustrated by the evaluation of averages like those above but for a 
dimer consisting of a pair of identical molecules labelled 1 and 2. 

If there is no vibrational coupling between the sites (Einstein limit), the average 
breaks up into a product of averages for individual sites having the forms already 
deduced. When there is coupling, the average is conveniently taken over the dimer 
oscillator eigenstates with frequencies U+ and U- ,  corresponding to new operators 

a, = 2-”’(a1* a’). 
Then we find 

t t t  = exp 2y(a+a-  --+a-). 

(74) 

(75) 

3.3.1. Calculation of (e:e2). The average (e:e2) corresponds to the band-narrowing 
factor e-‘ in conventional small-polaron theory (Holstein 1959). It is evaluated by 
operator disentangling using the fact that the operators A = a:at, B = -a+a- and 
C = a:a+ + a la-  + 1 satisfy equation ( 5 )  with b = 2. The evaluation then proceeds 
like that of (e) .  The analogue of equation (24) involves a sum over states /U+, U-), 
where it again proves more convenient to evaluate this sum before the sum over r. 
The result is 

(e:eZ)={1+2 sinh2y[n+n-+(n++l)(n-+l)]}-’, (76) 
which reduces to (8)’ as n+ and n- each tend to n. 

In this case, the coordinate -representation technique is at a disadvantage, because it 
gives a square root of a complicated expression which, as equation (76) shows, has to 
reduce after lengthy algebra to a perfect square. 

The matrix rechnique for the dimer involves 4 x 4 matrices. The density operator is 
represented by 

(77) 
-1  -1  bJ=diag(y+,  Y - 9  Y +  Y Y -  1, 

where yi = exp( - 2xi), and e:e2 is represented by 

/cosh2y 0 0 sinh 2y \  
O cosh2y sinh2y I 0 sinh2y cosh2y [e:e2i = 

\sinh2y 0 0 cosh2yI 

The determinant of ([PO:&] -I) is also 4 X 4, but interchanging rows and columns 
reduces it to a product of two 2 x 2 determinants which is readily expressed as 

det([pde2]-I)= [(l-y+)(l-y-)+2 sinh2 y(l+y+y-)]’/y+y-, (79) 
while from equation (77) 

det([p~ - I)= [(I - Y + W  - Y - > I ~ / Y + Y - .  (80) 
The perfect squares arise naturally here, and lead at once to the result (76). 
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3.3.3. Calculation of (8: (t)8z(t)8:81). The operator-disentangling technique evaluates 
this average by combining the methods used for (et(t)8) and (8:8,), with the result 

(0; (t)ez(t)&el) 

= { 1  +sinh’ 2 y [ n + n - ( l  -ei(u++o-) ?+ (n+ + l> (n-  + 1 ) ( 1 -  e-i‘o++w-)?l)-’. 
( 8 1 )  

This reduces correctly to (8’(t)8)’ in the Einstein limit. It also reduces to equation 
( 7 6 )  with y replaced by 2 y  when ei(o++w-)r= - 1 ,  which is the correct result for ((8:02)’) 
in view of the exponential form of 8. 

The coordinate -representation technique again suffers from the algebraic disad- 
vantage noted above. 

The matrix technique is applied straightforwardly. The matrix representing 8:& is 
given by equation ( 7 8 )  with the sign of y changed, and that representing 8: (t)8,(t)  is 
given by equation (78 )  with the upper right 2 X 2 submatrix multiplied by ei(w++u-)‘ and 
the lower left submatrix divided by the same factor. The required determinant again 
factorises into 2 X 2 determinants, with the result 

These expressions with equation (80) readily yield the result (81) .  

3.3.3. Calculation of (8,). The average (8,) is not readily calculated by the operator- 
disentangling and coordinate -representation techniques because the exponent in is a 
complicated function of the operators a+  and a: .  This presents no obstacle in the 
matrix technique. The matrix S is given by 

with the result that 8, is represented by the matrix 

c s  c); 

C = I + ~ ( c o s ~  2 y  - 1)U;  S = 3 sinh 2 y U .  ( 8 6 )  

After some algebraic manipulation, it is found that 

Tr([pOl]-I)= ( ( 1  -y+)’(l -y-)’+sinh’ ~ [ ( l -  Y+)% - y-)’+(1- Y+Y- ) ’~ ) /Y+Y- ,  ( 8 7 )  

which with equation ( 8 0 )  gives 

(8,)={1+sinh2 y [ l + ( n + + n - + l ) ’ ] ) - ” ’ .  (88 )  

This correctly reduces to ( 6 )  in the Einstein limit. 
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4. Discussion 

We have shown how ensemble averages of certain exponential quadratic phonon 
operators can be calculated in different ways. More general quadratic operator 
exponents can be treated by extensions of the present methods, which depend on the 
fact that the density operator p is itself an exponential quadratic operator. 

The alternative techniques used here have different advantages. Operator dis- 
entangling is useful for separating functions of at from those of a (or of q from d/dq), 
making it easier to write down matrix elements. However, evaluating these matrix 
elements and carrying out sums over intermediate states to obtain compact expres- 
sions may not be easy. From the coordinate matrix elements of the density matrix and 
manipulations of differential operators, one obtains an integral which gives the 
required ensemble average directly in terms of a determinant. The disadvantage of 
this technique is that algebraic evaluation of the determinant may be lengthy. 

The matrix technique may be regarded as more fundamental than the other two. 
For instance, it can be used to derive the operator disentangling formula (Balian and 
BrCzin 1969). Like the coordinate-representation technique, it gives the trace of an 
operator as the inverse square root of a determinant, but one often less complicated to 
evaluate algebraically. The strength of the matrix technique lies in the replacement of 
manipulation of operators by simple multiplication (note that exp TS is obtained 
trivially by diagonalising IS). One consequence is that the dimer calculations of 93.3 
can be readily carried through by the matrix technique without first transforming to 
the operators a, from a1 and u2. The matrix [ p ]  then consists of two 2 x 2 blocks on 
the diagonal, but for example [e , ]  is reduced from the sixteen non-zero elements of 
equation (85) to only six. 

In simple cases, more than one of the techniques can be used to confirm the 
correctness of results. In more complicated cases, obtaining an answer may depend on 
a judicious application of one technique, alone or in combination with another . For 
most purposes, the matrix technique is likely to prove the most direct. 
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